CALCS BAS007
SECTION PROPS (elastic & plastic) by sequential nodes method

CONTENTS

Application
Notation
Output
GUIDANCE
Input Format
Project Example: Hook Critical Section
Program Theory

APPLICATION

Compact beam sections
Maximum numbers of: Nodes 100, Cases 10.
SEE ALSO: BAS008, BAS017

NOTATION

NODEpoint, cross section surface shape definition
zcoordz coordinate, node
ycoordy coordinate, node
Pxforce, applied, parallel to long. axis
Mymoment, applied, parallel to trans. axis
Mzmoment, applied, parallel to trans. axis

OUTPUT

Elastic & plastic section properties
Nodal direct stresses for load cases comprising axial force and moments about the y & z axes
Problem definition plot showing section & principal planes

GUIDANCE

This program is considered most suitable for compact sections, BAS008 or BAS017 may be more suitable for sections composed of slender rectangular elements.
  • Nodes should be numbered sequentially clockwise around the section.
  • Voids should be accomodated in the manner shown in the figure
  • As there can be no breaks in the section definition, entry to and exit from the void is along pseudo boundaries (3-4 and 7-8 in this instance)
  • Nodes should be numbered sequentially anti-clockwise inside the void.

    INPUT_FORMAT

    DAT007
    NODE	zcoord	ycoord
    Case	Px	My	Mz
    ENDDAT
    

    Project Example

    DAT007	-34-400A SH Hook
    NODE	zcoord	ycoord
    1	0	0
    2	4	-.35
    3	4.76	-1.8
    4	2.5	-5.8
    5	2.54	-6.6
    6	2.50	-10.82
    7	1.54	-12.5
    8	0	-12.5
    7	-1.54	-12.5
    6	-2.50	-10.82
    5	-2.54	-6.6
    4	-2.5	-5.8
    3	-4.76	-1.8
    2	-4	-.35
    1	0	0
    Case	Px	My	Mz
    1	1.6*15	0	1.6*15*(5.6+5.4)
    ENDDAT
    
    OUT007-34-400A SH Hook
    etb elastic properties
    75.23	A	area
    -5.4153	ybar	neutral axis position
    935.75	Iz	2nd MoA
    -2.4759E-10	zbar	neutral axis position
    288.8	Iy	2nd MoA
    3.077E-9	theta12	angle of prin.planes
    935.75	I1	2nd MoA
    288.8	I2	2nd MoA
    0	K1	min rad gir
    0	K2	min rad gir
    plastic properties
    0	zp	zero stress axis
    -4.8062	yp
    122.09	1MApy	1st M of A (plastic)
    228.69	1MApz
    etb nodal stresses
    Node	Case1
    1	-1.2088
    2	-1.11
    3	-0.70096
    4	0.42755
    5	0.65325
    6	1.8438
    7	2.3178
    8	2.3178
    7	2.3178
    6	1.8438
    5	0.65325
    4	0.42755
    3	-0.70096
    2	-1.11
    1	-1.2088
    END007