CALCS BAS022
RIGID BODY LOADS by fem

NOTATION

A1 to A6accelerations related to the six degrees of freedom at the motion reference point
CCcombined load case
Ffreedom
Kx Ky Kzsupport stiffness, parallel to global X Y & Z axes
MRPmotion reference point, for accelerations, node0
Mmass, nodal
Nnode
Ninode, independent
solstiffness matrix assembly scheme, 1 link based, 2 coupling terms
X Y Zglobal coordinates

APPLICATION

Body subject to translational & rotational accelerations, with support forces proportioned according to prescribed stiffnesses
Maximum numbers of: Nodes 100, Links 100, CombCases 100

OUTPUT

Support forces parallel to x y & z global axes and link forces
Problem definition plot showing support & link positions & vectors indicating relative stiffnesses.

SEE ALSO

BAS023

THEORY

Stiffness matrix determined for rigid body on linear stiffness supports

GUIDANCE

From prescribed accelerations at the load reference point, translational and rotational accelerations are calculated at the body centre of gravity.
Support stiffnesses parallel to the global axes at a node are uncoupled.

INPUT FORMAT

DAT022title
Nisol
delimiteddata
NODEXYZMKxKyKz
entertabdelimiteddata
LINKNsNoK
entertabdelimiteddata
CCA1A2A3A4A5A6
entertabdelimiteddata
ENDDAT

EXAMPLE

Input

DAT022example
Nisol
01
NODEXYZMKxKyKz
0000
11000000
21100111
40100011
50110000
6.5.5.51000
LINKNsNoK
1151
CCA1A2A3A4A5A6
1100000
2010000
3001000
ENDDAT

Output

DISPC1C2C3
N1F1211
N1F20.50.50
N1F31.522.5
N2F110.50.5
N2F20.50.50
N2F3-0.5-0.5-1.164E-9
N4F110.50.5
N4F2-0.5-1.513E-9-0.5
N4F30.59.313E-100.5
N6F1211
N6F211.51
N6F3111.5
FORCEC1C2C3
N2F110.50.5
N2F20.50.50
N2F3-0.5-0.5-1.164E-9
N4F2-0.5-1.513E-9-0.5
N4F30.59.313E-100.5
LINKC1C2C3
12.328E-90.8660.866
END022