CALCS BAS023
RIGID BODY LOADS by etb

NOTATION

A1 to A6accelerations related to the six degrees of freedom at the motion reference point
CCcombined load case
Ffreedom
Kx Ky Kzsupport stiffness, parallel to global X Y & Z axes
MRPmotion reference point, for accelerations, node0
Mmass, nodal
Nnode
X Y Zglobal coordinates

APPLICATION

Body subject to translational & rotational accelerations, with support forces proportioned according to prescribed stiffnesses
Maximum numbers of: Nodes 50, CombCases 50.

OUTPUT

Support forces parallel to x y & z global axes
Problem definition plot showing support & link positions & vectors indicating relative stiffnesses.

SEE ALSO

BAS022

THEORY

Engineer's Theory of Bending

GUIDANCE

From prescribed accelerations at the motion reference point, translational and rotational accelerations are calculated at the body Centre of Gravity.
Support stiffnesses parallel to the global axes at a node are uncoupled.
FOR THEORY TEST PURPOSES ONLY, RESULTS NOT ALWAYS RELIABLE

INPUT FORMAT

DAT023title
NODEXYZMKxKyKz
entertabdelimiteddata
CCA1A2A3A4A5A6
entertabdelimiteddata
ENDDAT

EXAMPLE

Input

DAT023example
NODEXYZMKxKyKz
0000
314.29000111
414.29040111
50040111
60000111
77.772.96.93801.79111
CCA1A2A3A4A5A6
601.397.937000
701.397-.937000
8.9371.3970000
9-.9371.3970000
ENDDAT

Output

FORCECC1CC2CC3
N3F117.69-14.59150.3-147.2
N3F2359.9201.2221.9339.2
N3F3-80.45-66.14-58.71-87.88
N4F1-17.5220.88142.7-139.3
N4F295.13294.4135.5254
N4F3-80.45-66.14-58.71-87.88
N5F1-17.5220.88142.7-139.3
N5F259.77256.7218.997.59
N5F323.15-35.12-12.970.9979
N6F117.69-14.59150.3-147.2
N6F2324.5163.5305.3182.7
N6F3399.3-411.2-12.970.9979
N7F1-0.3501-12.58166.2-179.1
N7F2282.2205.7239.9248
N7F3751.1-374.1208.2168.8
END023