CALCS PROC017
VECTOR TRIANGLE

NOTATION

thetaangle-vector orientation (rad)
Px Pyvector-resolved parallel to x or y axes
Pvector sum
KUindicator-vector known or unknown
KU1= K Known/Unknown indicator
KU2= K or U
KU3= U

APPLICATION

typically triangle of forces

OUTPUT

two reactive forces

SEE ALSO

BAS002 PROC018

THEORY

refs

GUIDANCE

For hinges see PROC025
The procedure is configured so that data describing the vector may be input in more than one way, thereby avoiding the need to transform data. The combinations for each vector are as follows:
KorU theta P
P1 K * *
P2 K * *
p2 U * 0
P3 U *

INPUT FORMAT

LET KU2$="U":P1=:P2=0:theta1=:theta2=:theta3=:PROC017

EXAMPLE

Call Statement

LET KU2$=""U"":P1=5:P2=0:theta1=RAD(30):theta2=RAD(150):theta3=RAD(120):PROC017

Output

PROC017 VECTOR TRIANGLE, Rev 100299
Px1= P1*COS(theta1)= 0.7713
Py1= P1*SIN(theta1)= -4.94
Px2= -(Py1-Px1*TAN(theta3))/(TAN(theta2)-TAN(theta3))= -3.164
Py2= -(Py1-Px1*TAN(theta3))/(1-TAN(theta3)/TAN(theta2))= 3.234
Px3= -Px1-Px2= 2.392
Py3= -Py1-Py2= 1.706
P1= SQR(Py1^2+Px1^2)= 5
P2= SQR(Px2^2+Py2^2)= 4.524
P3= SQR(Px3^2+Py3^2)= 2.938
END017