CALCS PROC055
BHD SUPPORTING SEAT, VERTICAL DIRECT STRESS

NOTATION

Ggradient, variation of line force support
Pforce, applied, seat
wwidth, bulkhead support
x1position, force, applied
x2position, bhd nearest point to force
x3position, bhd furthest point to force
x4position, max bending moment, seat frame
xmposition, bhd mid point

APPLICATION

Seat frame member, under point loading at some arbitrary distance from supporting bulkhead

OUTPUT

maximum bending moment in seat frame member

SEE ALSO

PROC056

THEORY

Engineer's Theory of Bending

GUIDANCE

linear variation in supporting line force is assumed

INPUT FORMAT

LET x1=:x2=:x3=:p=:PROC055

EXAMPLE

Call Statement

LET x1=0:x2=0:x3=277.9:p=175.3:PROC055

Output

PROC055 BEAM SUPPORTED BY BHD, Rev 190599
w= x3-x2= 277.9
xm= (x3+x2)/2= 138.9
p2= -p*(1/w+(xm-x1)*(6/w^2))= -2.523
p3= -p*(1/w-(xm-x1)*(6/w^2))= 1.262
g= (p3-p2)/w= 0.01362
p0= p2-x2*g= -2.523
a= g/2= 6.81E-3
b= p0= -2.523
c= p-g*x2^2/2-p0*x2= 175.3
k1= (-b+SQR(b^2-4*a*c))/(2*a)= 277.9
k2= (-b-SQR(b^2-4*a*c))/(2*a)= 92.63
m4= p*(x4-x1)+g*x4^3/6+p0*x4^2/2-g*x4*x2^2/2-p0*x4*x2+g*x2^3/3+p0*x2^2/2= 3.052E-5
m4= p*(x4-x1)+g*x4^3/6+p0*x4^2/2-g*x4*x2^2/2-p0*x4*x2+g*x2^3/3+p0*x2^2/2= 7217
END055